

Chapter 3- Current Electricity

Chapter Overview

1. Current: net charge passing through an area per second; $i = \frac{dq}{dt}$ or $i = \frac{\Delta q}{\Delta t}$, where $\Delta q = \text{net charge}$

passes over a time Δt .

2.Ohm's law: $V \propto I$ or V = IR.

R is a constant for the conductor at a given temperature, called **resistance** of the conductor. Unit: Ω .

- 3. *V-I* graph is a straight line passing through the origin and the slope of the line is equal to the resistance of the conductor.
- 4. Colour Code for carbon resistors:

Black	0
Brown	1
Red	2
Orange	3
Yellow	4
Green	5
Blue	6
Violet	7
Gray	8
White	9
Golden	± 5%
Silver	± 10%
No colour	± 20%

5.Resistivity (ρ) is resistance of unit length and unit cross section of a conductor.

Relation: $R = \rho \frac{l}{A}$. Unit: Ω -m.

6. If a wire has a fixed volume *V* then the relation is $R = \rho \frac{l^2}{V}$ or, $R = \rho \frac{V}{A^2}$

7. Conductance: $C = \frac{1}{R}$. Unit: $(\Omega)^{-1}$ or siemens.

8.Conductivity: $\sigma = \frac{1}{\rho}$. Unit: $(\Omega - m)^{-1}$

9. Resistivity of different materials:

	Conductor	Semi-conductor	Insulator
Free Electron Density	$\approx 10^{28} \text{m}^3$	$\approx 10^{16} \text{m}^{-3}$ (when doped $\approx 10^{23} \text{m}^{-3}$)	Practically no free electrons
Resistivity	≈10 ⁻⁸ Ωm	$\approx 10^{-3} \text{ to } 10^{+3} \Omega \text{m}$	$\approx 10^{10}$ to $10^{16}\Omega$ m
Temperature dependence of resistivity	increases with temperature	decreases with temperature	Practically no dependence

10. Charge Carriers:

Metals: electrons.

Ionic crystals and electrolytes: positive and negative ions.

Semiconductors: electrons and holes.

Chapter 3- Current Electricity

11. Current Density: Current per unit surface area perpendicular to the direction of flow is current density. $|\vec{j}| = \frac{i}{4}$, or $i = \vec{j} \cdot \vec{A}$.

Drift velocity: (i) $v_d = \frac{i}{Ane}$ or $\vec{v}_d = \frac{\vec{J}}{ne}$ and (ii) $\vec{v}_d = \frac{e\vec{E}}{m_a}\tau$ or $v_d = \frac{e\tau}{m_a}\frac{V}{l}$

- 12. Mobility: $\mu = \frac{v_d}{E} = \frac{e\tau}{m_a} = \frac{1}{en\rho}$
- 13. Resistivity in microscopic parameters: $\rho = \frac{m_e}{ne^2\tau}$, or, $\rho = \frac{1}{neu}$.
- 14. Conductivity in microscopic parameters: $\sigma = \frac{ne^2\tau}{m_e}$, or, $\sigma = ne\mu$.
- 15. Current is the flux of 'current density' over a cross section of the path of the current:

$$di = \vec{j} \cdot d\vec{s}$$
, or $i = \int \vec{j} \cdot d\vec{s}$.

- **16.Equation of continuity:** For a closed surface in the path of the current, $\oint \vec{j} \cdot d\vec{s} = 0$.
- 17. Total current density when positive and negative charge carriers constitute current: $\vec{j} = \rho_+ \vec{v}_+ + \rho_- \vec{v}_-$. $[\rho = \text{charge density.}]$

For metals, $\vec{v}_+ = 0$, therefore total current density $\vec{j} = \rho_- \vec{v}_-$.

- 18. Generalized Ohm's law: $\vec{j} = \sigma \vec{E}$, or $\vec{E} = \rho \vec{j}$.
- 19. Temperature dependence of resistivity: $\alpha = \frac{\rho \rho_0}{\Lambda T}$ or, $\rho = \rho_0 (1 + \alpha \Delta T)$.
- 20. Temperature coefficient of resistance: $R = R_0(1 + \alpha \Delta T)$.
- 21. Combination of resistors:
 - (i) Series: $R = R_1 + R_2 + R_3$
 - (ii) Parallel: $\frac{1}{R} = \frac{1}{R_2} + \frac{1}{R_2} + \frac{1}{R_3} \dots$
- 22. Kirchhoff's Rule:
 - (i) Point-rule (charge conservation principle): In a circuit, algebraic sum of total currents meeting at a point is zero.

Or, the sum of incoming currents = sum of out going currents. $\sum i = 0$.

- (ii) **Mesh or Loop rule** (energy conservation principle): In a closed circuit, sum of the potential drops (current × resistance) across the resistors is equal to the net emf inserted in the loop. $\Rightarrow \sum iR = \sum E$
- 23. Current through two resistors in parallel if net current is i: $i_1 = \frac{R_2 i}{R_1 + R_2}$ and $i_2 = \frac{R_1 i}{R_1 + R_2}$.
- 24. Balancing condition of Whetstone's bridge: $\frac{P}{Q} = \frac{R}{S}$.
- **25.EMF** (**electromotive force**) and **emf seat**: Energy supplied by the cell per unit flow of charge is called **emf** of the cell. Its unit is volt. A cell is called **emf seat**.
- 26. Potential difference across a cell:
 - (i) While charging: V = E + Ir.
 - (ii) While discharging: V = E Ir.
- 27. Combination of cells:

Series grouping of emf seats: $E = E_1 + E_2 + E_3 + \dots & r = r_1 + r_2 + r_3 + \dots$

Parallel grouping of emf seats: $E = \left(\frac{E_1}{r_1} + \frac{E_2}{r_2} + \frac{E_3}{r_3} + \dots\right) r$ & $\frac{1}{r} = \frac{1}{r_1} + \frac{1}{r_2} + \frac{1}{r_3} + \dots$

Physics foundation

Website: www.faces.org.in/pf.html YouTube: Physics Videos

Chapter 3- Current Electricity

When n identical cells are connected in parallel:

Total emf :
$$\varepsilon_{net} = \varepsilon$$
 Total internal resistance: $r_{net} = \frac{r}{n}$

When n identical cells are connected in series:

Total emf :
$$\varepsilon_{net} = n\varepsilon$$
 Total internal resistance: $r_{net} = nr$

28. Electrical Power:

- (a) Delivered by emf seat: $P_{cell} = VI$.
- **(b)** Dissipated in resistor R: $P_R = I^2 R$.
- (c) If many resistors are connected in series and to an emf seat then same current pass through all of them, and power dissipated in each of them is: $P = I^2 R$.
- (d) If many resistors are connected in parallel with an emf seat then same voltage is across all of them, and power dissipated in each of them is: $P = \frac{V^2}{R}$.

29. Power dissipated in connecting wire: $P_C = \frac{P_s^2 R_C}{V_c^2}$.

(where $P_{\rm S}$ = power supplied, V = voltage at which power is supplied, $R_{\rm C}$ resistance of connecting wire)

- 30. Electrical energy and commercial unit of electrical energy: $1 \text{kWh} = 1000 \times 3600 \text{ J} = 3.6 \times 106 \text{J}$
- 31. Maximum power theorem for mixed combination of cells in a circuit with external resistance R: When external resistance is equal to the internal resistance, i.e., r = R, the power delivered to the external resistance is a maximum.
- 32. Voltage across external resistance R is $V = \frac{\mathcal{E}}{R + r} R$.

33. Meter bridge:

Value of unknown resistance Q in terms of known resistance P when null point in at x cm:

$$Q = \frac{100 - x}{x} F$$

34. Potentiometer:

- (i) Comparison of emf: $\frac{E_1}{E_2} = \frac{l_1}{l_2}$ (where l_1 and l_2 are the null points for the *emf*s E_1 and E_2 respectively.) (ii) Internal resistance: $r = \frac{x_1 x_2}{x_2} R$ (where x_1 and x_2 are the null points for auxiliary circuit is off and on respectively.)

35. Charging of a capacitor (Optional):

- (i) Charge at a time t: $q = q_0 \left[1 e^{-\frac{t}{RC}} \right]$.
- (ii) Potential difference across plates: $V = V_0 \left(1 e^{-\frac{t}{RC}} \right)$.
- (iii) Time constant: $\tau = RC$.
- (iv) Current: $i = \frac{q_0}{RC} e^{-\frac{t}{RC}}$

36. Discharging of a capacitor:

- (i) Charge at a time t: $q = q_0 e^{-\frac{t}{RC}}$.
- (ii) Potential difference across plates: $V = V_0 e^{-\frac{t}{RC}}$.
- (iii) Time constant: $\tau = RC$.
- (iv) Current: $i = \frac{q_0}{RC} e^{-\frac{\dot{r}}{RC}}$.

Physics foundation

Website: www.faces.org.in/pf.html YouTube: Physics Videos